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NECESSARY AND SUFFICIENT CONDITIONS FOR OPTIMALITY
FOR SINGULA:R CONTROL PROBLEMS: A LIMIT APPROACH
By
David H. Jacobson and Jason L. Speyer+
Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

Necessary and sufficient conditions for optimality for singular
control problems are presented for the case where the extremal path
is totally singular. The singular second variation is converted into a
nonsingula.r one by addition of a quadratic functional of the control; a
parameter -é— multiplies this added functional. By allowing € to approach
infinity the optimality conditions are deduced for the singular problem
from the limiting optimality conditions of the synthesized nonsingular
second variation. The resulting conditions are Jacobson's sufficient
conditions in slightly modified form. In a companion paper Inecessity
of Jacobson's conditions for a class of singular problems is demon-
strated by exploiting the Kelley transformation technique which converts
the singular second variation into a nonsingular one in a reduced dimen-

sional state space.

+Senior Analyst, Analytical Mechanics Associates, Inc., Cambridge,
Mass. Supported by NASA Contract NAS 12-656.



I. Preliminaries

1. Introduction

In [1] 2 new necessary condition of optimality for singular control
problems is developed and is shown to be nonequivalent to the well
known generalized Legendre~Clebsch (or Kelley) condition. In [2]
sufficient conditions for non-negativity of the singular second variation
are presented; in strengthened form these are sufficient for a weak
minimum. The sufficiency conditions, which are in the form of linear
algebraic equalities and inequalities, also yield insight into nonsingular
control problems and into the behavior of the important matrix Riccati
differential equation [3]. Relationship of the above new conditions of
optimality to existing necessary conditions is discussed in [1], [2];
thus, we refer the reader to these papers for general references to
research in singular control (variational) problems.

In this paper we show that, with slight modification, the sufficiency
conditions presented in [2] are also necessary for non-negativity of the
singular second variation. ‘Moreover, we show that these conditions
are indeed necessary and sufficient for a weak minimum for a class of
singular control problems. In certain cases a strong minimum is
implied. We prove these results by a limit argument. The singular
second variation is converted into a nonsingular one by the addition of
a term _ZLe_S‘ uTu dt, € > 0. By allowing € to approach infinity we deduce
the optimality conditions for the singular problem from the limiting
optimality conditions of the synthesized nonsingular second variation.
This limit approach has been used previously [4] as a computational

technique for solving singular optimal control problems.
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In a companion paper [5] we prove necessity of the conditions
given in [2] by exploiting the Kelley transformation technique [6]
which converts the singular second variation into a nonsingular second
variation in a state space of reduced dimension. In the reduced state
space the equivalence is established of the sufficiency conditions [2]
and the existence of the solution of the Riccati differential equation
(Jacobi or Conjugate Point Condition) associated with this nonsingular
second variation. This proves the necessity of the conditions given in
[2]. Disadvantages of the transformation technique are in its algebraic
complexity and in the need for the coefficients of the second variation

(which depend upon time) to be many times differentiable. Moreover
%P
atP

u, where H is the variational Hamiltonian) the transformation technique

if the problem is singular of order p (i.e. H contains the control
must be applied repeatedly, p times, before a nonsingular problem is
obtained.+ Nevertheless, the transformation technique does give another
viewpoint and ties together the conditions given in [1], [2] and the
pioneering work of Kelley et al. [6] and Robbins [7]. Independently
Goh [8] and McDanell and Powers [9], using Goh's transformation tech-
nique [10], have arrived at similar results.

The limit approach presented in this paper has the following advan-
tageous features:

i) A direct proof of necessary and sufficient conditions for opti-
mality is obtained without the need to transform the problem to a reduced

-t

state space.

+A nonsingular problem is unattainable if u does not appear in a time
derivative of Hu'
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ii) The concept of "order of the singular arc p" is not required

in the proof.

iii) Differentiability requirements are not as severe as those

demanded in [5].

2. Problem Formulation

We shall consider a class of control problems where the dynamic
system is described by the ordinary differential equations
k = f(x,u,t) ; X(to) =X (given) (1)
where
f(x,u,t) 2 f05,t) + £ (%, thu (2)

The performance of the system is measured by the cost functional

tf T
Via(-)] = y {L (5, 1) + 0™ Ly(x, t)}dt + Fx(ty) (3)
vt

o
and the terminal states must satisfy

Wixit)) =0 . (4)
The control function u(-) is required to satisfy the constraint

u(-) e U (5)

where the set U is defined by

A

U= U1 N U2 (6)

where
A .
U, = {u(-): u o < u, (t) < w oo te [to’tf]’ i=1,...,m,
where u_ . > -oo, u < +oo} (7)
min max

and

U, 4 {u(-): u(-) is piecewise continuous in [to, tf]} (8)

In the above formulation x is an n~-dimensional state vector and u is an

m-dimensional control vector. The function fl is an n-dimensional
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vector function of x at time t, fu is an n x m matrix function of x at
time t and L2 is an m=dimensional vector function of x at time t; the
functions L1 and ¥ are scalar. The terminal equality constraint func~
tion ¥ is an s-dimensional column vector function of x(tf).

In the sequel we shall use the following assumptions.

are given explicitly,

Assumption 1. The initial and final times tor by

-0 <t <t,.< oo.
o} f

Assumption 2. The functions f, Ll’ L, are three times continuously

differentiable in each argument, and the functions F and ¥ are three
times continuously differentiable in x(tf).

With the above formulation and assumptions in mind, we now
state the optimal control problem: Determine the control function u(-)

which satisfies (1), (4) and (5) and which minimizes V{u(-)].

3. Totally Singular Problems

Along an optimal trajectory it is well known that the following

necessary conditions (Pontryagin's Principle) hold:

: - — T

A =H (x,u,\t) 5 Mt) = A F (x(t) + ¥ v (9)
where

u = arg min H(x,u, \, t) (10)

u Sy, Su
min 1 max

and

Hix, u, A, t) 2% _{L(x,t) + wTL,(x, 0} + 2 Tilx, u,t) (11)

Here u(- ), %(-) denote the candidate control and state functions, A\(-)
is an n-vector of lL.agrange multiplier functions of time and )\o is a
constant ® 0. Associated with the terminal constraint ¥ is an s-vector

of constant LLagrange multipliers v,

Assumption 3. We shall assume that the control problem is normal so

that )\o can be set equal to unity.
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Definition 1. A totally singular arc is one along which

Hui(x,x,t) =0 ;te [to,tf] , i=1
We now make

m (12)

g ooy

Assumption 4. _1;(- ), the candidate for a minimizing solution is continuous

5 Mo

i i . <u(t) < i=1,...
in t, totally singular, andu_. <wuft)<u .  Vte [to’tf]’ i ,

In subsequent sections we develop necessary and sufficient condi-
tions for this totally singular control function to be a minimizing solution

(relative minimum).

II. Conditions for a Relative Minimum: Unconstrained Terminal State

1. The Second Variation (GZV) and Associated Theorems

Before proceeding with the second variation we make the following
definitions:

Definition 2. V[u(-)] has a weak relative minimum at u(-) if

VIu(-)] - V[a(-)] = 0

VYu(-) e U>s sup sup lx. - x.] + sup sup Iui - Eil < w

- <i< . <is<
i=l,...,n ty tSt, j=l, ..., m L StSt,

Note. Since x(to) - ;Z(to) = 0 the above restriction on u(-) is equivalent to
fu-) = a() || <w,
where

flu() - -1-1—(-)” 4 sup sup Iui - u,
=l o,m t StSt,

and where w1(< w) is sufficiently small,

Definition 3. V[u(+)] has a strong relative minimum at u(-) if

Viu(-)] - V[u(-)] = o

Vu(-) € U> sup sup lxi _;il <w

i=l,...,n t_StSt

In the sequel we shall denote u(-) = E(- ) by Ou(-).
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In the absence of terminal constraints (4) an expression for the
second variation (for Ou(t) sufficiently small, t € [to,tf]) is:

t
f
GZV[ﬁu(- )] = S‘ {%-GXTHxxﬁx + GuTHuxox} dt + —lz—éxTFxxéx (13)
tO tf

subject to the linearized differential equation
0x = fxéx + fuéu ; Gx(to) =0 . (14)
In (13), (14) partial derivatives are evaluated along u, x, \.

We are led to the study of the second variation because of the
following theorem [slightly altered form of Theorem 1, Gelfand and
Fomin [11, p. 99]].

Theorem 1. A necessary condition for V[u(-)] to have a weak relative
minimum at u(-) is that 52V[5u(- )] 0 VOu(-) sufficiently small to
justify the expansions (13), (14) and such that u(-) + Ou(-) € U.

The condition 52V[5u(- )] & 0 for all admissible Ou(-) is necessary
but not sufficient for the functional V[u(-)] to have a weak minimum at
u(-). A sufficient condition is provided by the following theorem.

Theorem 2. [Gelfand and Fomin [11, p. 100]] A sufficient condition

>
for V[u(+)] to have a weak relative minimum at u(-) is that GZV[Gu(- )]
be strongly positive.+

Unfortunately, it turns out that the singular second variation cannot
be strongly positive [12]. Here we prove this using arguments similar
to those suggested by Johansen [13]. For simplicity of presentation let
us consider the case where x and u are scalars; the arguments generalize

to the vector case. Suppose that we set Ou(t) = bsingt Vt e [to,tf] and

choose b 3 u(-) + Ou(-) € U. The solution of (14) when driven by this Ou(-) is

+That is, 52V[5u(-)] = k“ 511(-)“2 V admissible Ou(-), where k> 0 is a
constant,



t
Ox(t) = b g\ yf(t,'r)fu('r) sinqr dT
i

o

where
7?5 glt,7) = £ (B, 1) ; Blr,7) =1
Integrating (15) by parts yields
of

O0x(t) = b{ g‘ [%é (t,'r)fu(T) + yf(t,'r)—gq—‘_& ('T)]%1 cos qt dr
vt

O

1 1
- fu(t)a cos qt + #(t, t ), (t) 3 <8 qto}

From (13),

t
f
*V[bu(-)] sy (m_[ox® + [ou] |m__ | |0x]}at
t

1 2
t g 1F [0
b
From (17),
— o o1
o] < 211052 wmgm + de, 12 )] feos ar far
o]

+ 1,00 ] [eosat| + [dt, t )| [£ (¢ )] [cosat [}

of
< by f 02 (e, )5 (1) + die, 1) 52 ()] [ar

+ @] + (Bt )] £, [}

(15)

(16)

(17)

(18)

(19)



Thus

t
f 2
2 1 b.2.2 b
6°V[6u(-)] < S;o {3 [H ()" + T plH_ [}at

3 lE @)% (22)
t
a, d
&2 + -2} (23)
SR

Now if GZV[ﬁu(- )] is strongly positive then —k (constant) > 0 such that
bz{ﬁ%*%}zkﬂéuvnlz , Vg ; 0<g<o (24)
q
Clearly (24) cannot hold for k a constant (> 0) since q can be made
arbitrarily large (q is directly proportional to the frequency of the
sine input). Thus 52V[5u(- )] cannot be strongly positive.
In view of the above failure of Theorem 2 for singular problems
we offer the following more useful sufficiency theorem.
Theorem 3. A sufficient condition for V[u(-)] to have a minimum at u(-)
is that 52V[5u(- )] # 0 for all admissible Ou(-) and that
6%v[bu(-)] > |a[Bu(-)]] || Bu(-) ] (25)

for n 511(-)” sufficiently small, where

a[6u(-)] & Y[a() + Su()] - V[u(-)] - 62V [bu(-)] 26
1ou(-) | “

Proof. Let

AV[6u(-)] & V[u(-) + Ou(-)] - V[u(-)]
then, by Assumption 2,

AV[Bu(-)] = 82V[Bu(-)] + al[Bu(-)] || 6u(-)||? (27)
where a[0u(-)] —>0 as |[Ou(-)]| — 0. From (27) and (25),

AV[Bu(-)] - a[u(-)] [|u(-)]|% = 8%V[Su(-)] = |a[u(-)]] [|ou(-) ]
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for | 5u(-)“ sufficiently small. Thus,

aV[u(-)] = [[6u(-)||*(|a[Bu(-)]] + al[u(-)]} (28)
so that

aV[bu(-)] = 0 VOu(-)> ||Ou(.)] sufficiently small. (29)
However, (29) is just the definition that V[u(-)] has a weak relative
minimum at u(-) so that the theorem is proved.
Note. If, as in the nonsingular control problem, the conditions of
Theorem 2 are satisfied then clearly so are those of Theorem 3. How-
ever, the important point is that Theorem 3 can be satisfied without

GZV[5u(- )] being strongly positive.

2. Principal Results

Before stating our main theorems we make the following assump-
tion and definition.

Assumption 5. The linearized system 0k = fX5x + fu5u is controllable

from time t_ to time 7, V7T € (to’tf]5 that is,

T
gt g, 0')£u(cr)fg(tr);£T(7,0')do‘ >0, Vroelt,t] - (30)
o

where

2 dir,0) = £ (1)dlr,0) 5 Blo,0) =T (31)
Definition 4. A real symmetric n x n matrix function of time O(t) is
said to be monotone increasing in t if the scalar J(x,t) 4 xT@(t)x is
monotone increasing in t for all constant n-vectors x.

Theorem Al.

(i) Necessary Condition. Under Assumptions 1 through 5a

necessary condition for 52V[5u(- )] # 0 for all admissible Ou(-) is that

AVt e (t ] a real symmetric matrix function of time ‘15(-) which is

o’ tf

monotone increasing in t such that
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H o+t fu P=0 Vt e (to,tf] (32)
- = -F >

F_(t) - P(t) = -P(t) > 0 (33)
where

P-Q+a Po (34)

o= -of ; ®(t,) = 1 (35)
and

. T ) _
-Q=H_+f Q+Qf ; Q(ty) = F__(t,) (36)

(ii) Sufficient Condition. In addition to the above stated condition

i’(-) exists Vt € [to, tf] (strengthened existence condition).
Note. The gap between the necessary and the sufficient condition is
minimal.

Corollary Al. 1, If L1 and F are quadratic functions of x, if fl and L2

are linear in x, and if fu is independent of x, then condition (i) of
Theorem Al is necessary and together with the strengthened existence
condition (ii) of Theorem Al is sufficient for V[u(:)] to have a strong
minimum at u(-).

Corollary Al. 2. [2] A sufficient condition for 52V[5u(- )] & 0 for all

admissible Ou(-) is that Jvt e [to, tf] a real symmetric matrix function

of time P(-) which is continuously differentiable, such that
T

H +f{ P=0 Vt e [to,tf] (37)

. T _ >

P+Pf +f P+H_ =Mt >0 Vtoe [t ,t] (38)
- =

Fxx(tf) P(tf) 0 . (39)

Proof. Integration of (38) and the use of (34), (35) and (36) yields

a(-iE pa [Q—l(t)]TM(t)[é-l(t)] 2 0 ==> P monotone increasing.
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Note. The gap between this sufficient condition and the sufficient

~

condition of Theorem Al appears to be minimal since P is, a priori,

differentiable almost everywhere (because it is monotone [14]).

Theorem A2. Sufficient conditions for V[u(-)] to have a weak relative

minimum at u(-) are that the strengthened condition (ii) of Theorem Al
holds and that
6%V[6u(-)] = 0 == V[G(-) + Ou(-)] > V[u(-)]

See Theorem 3 for a condition which ensures this.

3. Useful Lemmas

We need the following Lemmas in order to prove Theorem Al.
Lemma 1. The second variation (13), (14) is expressible in the equi~

valent canonical form:
ts
64V[Bu(-)] = 6°V[bu(-)] 2 § Sutc(t)0y dt (40)
vt
o

subject to

L (0y(t) = B(1)dur) 3  Oy(t ) = 0 (41)
where

C(t) = [H, (1) + £ T (Q(t)]e (1) (42)

B(t) = <I>(t)fu(t) (43)

B(t) = -@(t) (t) ; B(t,) = I (44)

and where

Q) = H__(t) + QUL (1) + £ T (0Q() 5 Q) = F_(x(t))  (45)

Oy(t) = &(t)0x(t) (46)
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Proof.

(i) (13), (14) ==> (40)-(46). Adjoin the linearized system

equation (14) to the second variation (13) using a continuously differen-

tiable vector multiplier function of time ON(+):

t
f
524 Bu(-)] = Y (10xTr_ o+ 00T ox + WT(g 6x + £ Bu - Oy} ar
Yt
(o]

1 T
=0 )
+ 5 Ox Fxx X (47)
ts

Integrating OA0% by parts yields

t
. f
6% 6u(+)] = g {30xTH_6x + 0uTH_Ox + O\ T(f 0x + 1 bu)
‘to XX ux X u

t
f
: 1 T
+ OAOx}dt + 30« F_Ox| -O0\Tox] . (48)

t
tf o)

Now set
ON(t) = 3Q(t)Ox(t) (49)
where Q(t) is an n x n symmetric matrix (continuously differentiable)

function of time. Noting that 5x(to) = 0, the second variation becomes

t
f L)
6%ou()] = | (30xT@ + i +1 Ta+u )ox
t

o)

T T 1~ T

+ Ou (H +1 Q)0x}dt + -2-6x (F - Q)0x
ts

(50)

Now we let

- T ) -
-Q = H _+f Q+Qf ; Qt)=F_ (t) (51)



-13-

Clearly Q(-) is a well defined continuously differentiable function of

time, With this choice of Q(-) the second variation is
t
22 £ T
627 [u(-)] = g suT(H _ +1 TQ)doxat (52)
. : ux u
o

subject to

0%

£X5x + fuﬁu ; 5x(t ) =0 (53)
Define

by = o0x (54)
where

p=-ef ;o) =1 . (55)

Clearly ®(t) is invertible Vt ¢ [to, tf] so that the second variation becomes
. :
623 [Bu(+)] = Y Sul(m  +f TQ)@ loyat (56)
Ji ux u
o

subject to
0y =@f 0u ;  dy(t) =0 (57)
which is the required form of the second variation,

(ii) (40)-(46) == (13), (14). Since @ is invertible, (54), (56),

(57) yield (52), (53). Adjoin (53) to (52) with a Lagrange multiplier func=-
tion ON (+) and set
ON(t) = %Q(t)ﬁx(t) . (58)

The second variation becomes

t
~ f N o~ ~
6%¥ [u(-)] = g {30xT(Q + Qf_+ fXTQ)éx
“t

(o]
+ 5uT(H +£TQ 4 TQ)éx}dt
ux u u

- %éxTSGX (59)

te
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Letting
S’(t) = -Q(t) Yt € [to, tf] (60)

yields

t
~ f
625 [Bu(-)] = g (LoxTu_0x+ 0uTH_Ox}at + 20xTF 0x| (61
¢ xx ux xx
o tf
so that the Lemma is proved.
Lemma 2. Condition (i) of Theorem Al is equivalent to the existence

Vt e (to, tf] of a real symmetric monotone increasing matrix function of

time P(.) such that

C+BIP =0 Vt e (t,,t,] (62)
-P(t) = 0 (63)
Prooi. Let
TA
P=0¢Po+Q . (64)

Substituting this into (62), (63) yields (32), (33) and vice versa. Note

the coordinate independence of conditions (32), (33).

4. A Related Nonsingular Second Variation

Consider the nonsingular quadratic functional

t
. £
6%V [Bu(-), €] = 62V [ du(-)] + %Eg duldudt (65)
t0
t
= Y {5uch5y + —z-lzauTﬁu}dt _(66)
vt
Q

where € > 0 is a scalar and

0y = Bou ; éy(to) =0 (67)
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Lemma 3. If 52V[5u(- )] is nonnegative VOu(-) then so is GZVN[ﬁu(- ), €]
nonnegative. Moreover 52VN[5u(' ), €] is positive-definite.

L Cf T
Proof. e Y Ou~O6udt > 0 unless Ou(:) = 0.
vt

o
Theorem 4. [Gelfand and Fomin [11, p. 123], Breakwell and Ho [15]].
If the quadratic functional 52{/’[5u(' )] is nonnegative then the matrix

Riccati differential equation

-5_=-(c+BTs)T(c+BTs )e ; St =0 (68)

associated with 52VN[5u(- ), €] has a solution which exists Vt € [to, tf].
Proof. By Lemma 3, 62VN[6U.(' ), €] is positive-definite if 52‘\./'[511(- )]
is nonnegative VOu(.); Gelfand and Fomin's theorem for positive-
definite functionals then applies.

Note. A special case of (66), (67) is treated in [11]; see [15] for the
general case.

Theorem 5. If the matrix Riccati differential equation (68) has a

solution which exists in the interval [T,tf]; ty ST s t; then the control
function that minimizes
te

GZV'lT\I[Gy('r), du(+), €, 7] 4 S; {ﬁuTC(Sy + -Zl-EGuTﬁu}dt (69)
subject to

0y = BOu ; Oy(r) given (70)
is

6u(t) = ~€[C(t) + BT (S _(0)]0y(t) 5 telr,tg] (71)

and moreover
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min azv;[aym, Su(-), €, 7] & 8%VO[by(r), €, 7]
u(-)

1T
3%y (1) (1) dy(7) (72)
Proof. Substitute (72) into the Bellman equation

2 . T 1 T
ﬂ-gag {6 VO[Gy(t),G,t]} = m;n[éu Coy + 5 6u” 6u

+ {8(85y_) 62V0[6Y(t), €, t]} TB 611] . (73)

Minimizing with respect to Ou yields (71) and causes the right hand
side of (73) to be quadratic in Oy(t). Equating coefficients of quadratic
terms in (73) yields equation (68) for .S€. If S€(t) exists Vt € [to, tf]
Bellman's equation is valid and the theorem is proved.

Lemma 4. Se(-) is a continuous function of the parameter €.

Proof. C and B are continuous functions of time in [to, tf] and the
right hand side of (68) is analytic in S€ and € [Coddington and Levinson
[16]].

Lemma 5. 52VO[5y(7’), €,7T] = %éyT(T)Se(T)ﬁy('r) is a monotone decreasing
function of € (€ increasing); T € [to,tf]. Moreover, SE('T) is a monotone
decreasing matrix function of €; 7 € [to, tf].

Proof. For some arbitrary Oy(7), T and €, we have

t

f
6%v°[by(r), €;,7] = min g {6uTcoy +2—1€'—5uT5u}dt . (74)
Ou(-) Y7 1

Let the control function that minimizes (74) be 5u(1)(') and its associated
state path be ﬁy?(- ). Now for any e, = €, it is clear that

t t

f f
T 1 T T
§T {(6u])"COy] + ———262(5u§’> Oul}dt < XT {(8u]) "oy}

1 o0,Tx o
+—2?1~ (Gul) Gul}dt (75)
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and, by definition

2.0 - tf o, T o 1 o0,Ts o
Y [GY(T), €7, I g‘ {(6111) Céyl + '2—'6';(5111) Gul}dt (76)
“T

Thus for any €, = € we have

2,0 .

0°VOdy(7), €y, 7] S O°VO[Oy(7), € ,7] . (77)
Since Oy(r) and T are arbitrary, the first part of the theorem is proved.
That S_ (1) S S_ (1), T €[t ,t,], €, & €,, follows from (77) and Theorem

€, €1 o’ 'f 2 1
5.
Lemma 6. Under Assumptions 1 through 5, if 52V[5u(- )] # 0 for all
admissible Ou(-) then S_(t) & Lim S (t) exists Vt e (t ,t,] and is
€—>00 €

negative semi-definite.
Proof. From (68) S€(7') S0 VT € [to,tf], Ve; 0 < e <. By Lemma 5
S€('r) is a monotone decreasing function of € (€ increasing) so that it
has a limit (possibly -oo).

t

Given an arbitrary time 7 in the interval (to, we can by Assump-

R

tion 5 construct a variation Su,(t); t € [t ,T) such that
3 o

.
T 1 T

gt {6ulcoy, + L6uTou Jar

(o]

is finite and such that

5y3(7) = y(1) v(T) arbitrary . (78)
Suppose that Soo('r) = -0, Then, by Lemmas 4, 5, SE('r) can be made
arbitrarily large and negative by increasing €. This implies that for
some Y(T), 52VO[5Y3(7), €, T] can be made arbitrarily large and negative
which implies that

r
T 1 T 2
‘i{5u3C5y3 + E’géu3 6u3}dt + 0 Vo[6y3(’r), €,71] <0 (79)

(¢]
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for some €; 0 < € <. By Lemma 3 this contradicts the assumption
that 52;/'[511(- )] ® 0 so that SOO('T) cannot be infinite. Since 7T is arbi-
trary, and since Se(tf) = 0 Ve, we conclude that

SCD(T) ;T € (to’tf] is finite . (80)
Note. We have not shown that as € becomes large the control
{u(t) + 6u3(t),t € [to,'r); (t) + 6u°(t), te [—r,tf]} € U. However, we
have shown that if SOO(-) is not finite in the interval (to, tf] then
GZVN[Gy(tO), Ou(- ), €, to], € sufficiently large but finite, does not have
a minimum at Ou(-) = 0. Since for the quadratic functional there is
no distinction between a weak and a strong minimum it follows that
52VN[5y(to), Ou(-), €, t ] can be made negative by a weak variation
which satisfies u(-) + Ou(-) € U. We conclude, then, that the Lemma
is proved.
Lemma 7. SGJT)is a monotone increasing matrix function of 7.

Proof. From (68)

-
S (7)= lim [S c+8Ys )Tic+BTs yeat] (81)
oo} € €
€ —00 t
o
T=A
- lim [§ (c+BTs )Tc +BTs )eat]
c—00 Yt € €
o
T
+ lim [ (C + BTSG)T(C +BTS )edt] (82)
€—> “T-A €
From (82)

T

T T
S (1) =S _(7 - 4)+ lim [g (C+B°S )"(C+B
*® et € YT=A ¢

TS€)edt]. (83)
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The validity of the Lemma follows immediately from (83) since for

all € > 0,
[§ c+BTs )Tic+BTs )edt] 2 0 vazo0 . (84)
Jroa € €
Lemma 8. If SOO('T) exists for 7 € (to, tf] then
T .
C(t) +B ('r)Soo('r) =0 a.e. in [to,tf] . (85)
Proof. Suppose the contrary. Then, for somerT e(to,tf), by

Assumption 2 and Lemma 4, Je* >0 3

.
g (C + BTSG)T(C +BYS Jdt >0, Ve e (86)
. t €
£
so that
.
lim [-g (c +BTs )T«c +BTs )edt] = w (87)
€ — 0 tf € €

contradicting the fact that SOO(T) exists for 7 € (to, tf].

5. Proof of Theorem Al.

(i) Necessary Condition. If Assumptions 1 through 5 are

satisfied and if 52:\}[5u(- )] = 0 for all admissible Ou(-), then by Lemmas
6-8 BSoo(t); te (to,t ] which is a real symmetric monotone increasing
matrix function of time such that

T .
C+8B Soo =0 a.e. in [to,tf] (88)

Soo(tf) =0 . (89)
We show now that (88), (89) imply (62), (63) which by Lemma 2 yield
the conditions of Theorem Al.

Define

ia(tf) = S_ (t;) (90)
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Since by Lemma 7, Soo(t) is a monotone increasing function of t it

follows that

-P(t) = 0 (91)
Defining

P(t) = Soo(t) R t e (to,tf) (92)
yields

T= .

C+B P-= a.e. in [to,tf] (93)
where

P(t) exists Vt e (¢, t] (94)

and is monotone increasing int. In order to establish necessity of (62)
we need only show that (93) implies

C+BIP=o0 Vt e (t,t,] (95)
Suppose that for some t € (to, tf)

cit) +BIw)PK) £o . (96)
Since C and B are continuous functions of time (96) can only occur if a
jump in iD occurs at time t that does not lie in the null space of BT(t).
Moreover, since ’l:’ is monotone increasing in t it follows from (96) that

C)B(t) + BY(t)P(t)B(t) >0 . (97)
Now since P is monotone increasing int, and C and B are continuous
functions of time, (97) must hold during the time interval [t,t + A]
(A > 0 and sufficiently small), contradicting (93). Thus, we are led
to the conclusion that

C+BP =0 Ve e (e ,t) - (98)
Equation (95) follows from (98) since i:’(t;) = AP(tf).

(ii) Sufficient Condition. Suppose that (91) and (95) are satisfied

and that (94) is satisfied in strengthened form (i.e. ‘ls(t) exists Vt € [to,tf]).
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Adjoin the linearized dyné.mics to the second variation as follows:

t
- ~ f “
52V[5u(- ) = 52V[5u(- )] ég {éuTcéy + GyTP(BGu - 8y)rdt  (99)
t

O
t T Tz g Tz
=§ du”(C + B P)0ydt - g Oy ~ POy dt
t Yt
O (0}

(100)
The first integral is zero since (95) holds. The remaining integral can
be written in Stieltjies form as

te
g oy T Pa(0y) (101)
't

o
which, upon integration by parts [14, p. 118] becomes

t t

f - - f
5 -é- adeP(t)éy - —lz—éyTpéy]t (102)
t o
O
Thus
b
6%V [bu(-)] = g 2oy Tab(t)dy - 30y Poy (103)
to tf

since Gy(to) = 0. From (91) the term evaluated at tf is nonnegative,
and the integral is nonnegative since P(.) is a monotone increasing

matrix function of time. Sufficiency is proved.

III. Conditions for a Relative Minimum: Constrained Terminal State

1. The Second Variation 05V

Here we treat the class of totally singular problems where equality
(4) is present. In this case the second variation (for Ou(t) sufficiently

small, t € [t_,t.]) has the form
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t

f
2 _ 1, T T
0°vx[bu(-)] = 5;0 { > 0x Hxxﬁx + Ou Huxﬁx}dt

1. T T
+ 25x (F__ +v apxx)bx (104)
ts
subject to the linearized differential equation
0x=1f 0 0 . =
X fx x + fu u 5x(to) 0 (105)
and the linearized terminal constraint
ll/ 0x =0 . (106)
X
b

We now introduce

Assumption 6. The s x n matrix l‘(/x(;(tf)) has full rank s.

Lemma 9. By Assumption 6, s components of Gx(tf) -~ referred to as

5xs(tf) -~ can be solved for in terms of the remaining n - s components

éxn“s(tf) .

For example,

8x°(ty) = 'AIIAz‘an-S(tf) (108)
where+
n
 E—
s][a, | A,] 22 (109)
? (n-s)
so that
" 1 n~s N B 1|
Ox(ty = | -==mmmmmmme- = | ==ee- 6x""%(t,) £ 28x" %ty
n-=s
Lo ey || T (110)

where Z is n x (n - s).

+If A1 is singular then differently partitioned ll/x and 5x(tf) must be used.
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2. Principal Results

Theorem Bl.

(i) Necessary Condition. Under Assumptions 1 through 6 a neces~-

‘s 2
sary condition for 0"V*[0u(.)] Z 0 for all admissible Ou(-) is that
IVt e (to’tf) a real symmetric matrix function of time i’*(-) which is

monotone increasing in t such that
T

R =

Hux + fuP 0 Vt e (to’tf) (111)

T T - sk - PO TA* - >3
Z(F__+v t//XX Pr(t ))Z = ~Z P*(t;)Z = 0 (112)

where

e T* e
Pt =Q+& P*¢ (113)
&= -of ; o(t) = I (114)
O-H +f0+Qf ; QEt)=F +viy (115)

XX X x f XX XX

and where Z is defined in (110).

(ii) Sufficient Condition. In addition to the above stated condition

Pk (t) exists Vt € [to,tf] and

\%

T T
ZUF, _+v ¥ - P*)Z 0

ty

Corollary B1.1. If Ll and F are quadratic functions of x, if fl and L‘2

are linear in x, if fu is independent of x and if ¥ is linear in X(tf) then
condition (i) of Theorem Bl is necessary, and together with the
strengthened existence condition (ii) of Theorem Bl is sufficient, for
V[u(-)] to have a strong minimum at u(-).

Corollary Bl.2. [2] A sufficient condition for 52V*[5u(- )] # 0 is that

IVt e [t ,t.] a real, symmetric, continuously differentiable matrix
o’ f ’ >

function of time P*(-) such that
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T

K =
H +{ Px=0 Vt € [to,tf] (116)
. T
sk %k %k = 1 =
P+ PR+ P*+H =M't) = 0, Vt e[to,tf] (117)
T T _ px >
Z(F__tv x//xx P*)Z 0 (118)
i

3. Useful Lemmas

Lemma 10. The second variation (104)-(106) is expressible in the equi-

valent canonical form
ts
0*v+[ou(-)] = 0%7+[ou()] 2 | " ouTcoyar (119)
vt
o

subject to
0y = BOu Oy(t ) =0 (120)
and

Y Oy =0 t121)
X

b
where C and B are given by (42), (43).
Proof. See Lemma 1. In addition we have (121) which follows from the
fact that @(tf) = I, see (44).
Lemma 11. Condition (i) of Theorem Bl is equivalent to the existence
Vt e (to,tf) of a real symmetric monotone increasing matrix function

of time P*(-) such that

C+BIP* =0 Vie (t_,t,) (122)

—zTiD*(tf')z = (123)

Proof. See Lemma 2.
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4., A Related Nonsingular Second Variation

Consider the nonsingular variational problem

t
R f
62v>1k\1[6u(. ), €] = 6%V [bu(-)] + EIES bu L by dt (124)
tO
t
- S' {8uTcoy +-2L5uT5u}dt (125)
¢ €
[¢]
subject to
0y = BOu ; 5y(to) =0 (126)

and the linearized terminal constraint

Y Oyl =0 . (127)
X
t
Theorem 6. [Gelfand and Fomin [11, p. 123], Breakwell and Ho [15]].
If the quadratic functional 52V*[5u(- )] is nonnegative then the matrix

Riccati differential equation

Y To T T
§_=-(C+B'S)7(C+B S )e (128)

associated with 52V>1"\I[5u(~ ), €] has a solution Se(t) which exists

Vt € [to,tf). In a neighborhood of t;, S_1is given by [17]

f’

S ()= W (t) - N (M- Le)NT(t) (129)

€ € € € €
where

-W_= -(C + BT w )T(c +BTw )e ;3 W({t)=0 (130)

€ € € f

- T__T . _

M_=N_BB N _e ; Me(tf) =0 (131)
and

. T T.T ] T

N_=(C+B W) B N_e ;o Nt =Y. (132)

Note that Me(t)’ t <t,is invertible by Assumption 3.

f’
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Theorem 7. If the matrix Riccati differential equation (128) has a

solution Se(T) which exists for all 7 € [to, t;) then

min 62V?i<\17[6y( T), 511(- ), €, ‘T] A GZV*O[(SY(‘T), €, ‘T]

u(-)

= 30y T ()8 (7)By(r) (133)

Proof. See [17, p. 183-184].
Lemma 12. Soo(t) 4 lim S (t) exists Vt € (to’tf) and is a real symmetric
€ >0

monotone increasing matrix function of time such that

T .
C+B'S_=0 a.e. in [to,tf] . (134)

Proof. The proof is very similar to the proof of Lemmas 4-8 and so

is not described here.

T

Lemma 13. Lim Lim ZTS (t)Z = Z Soo(tf)Z =0 (135)
€ —00 ’c—>’cf €
where Z is defined in (110).
Proof. We have
N _ -1 T
S€(t) = W€(t) Ne(t)M€ (t)N€(t) (136)

Since N€ obeys a linear homogeneous differential equation we have

: T.T -1
S (t) = W _(t) - ¥ _8_(M_"(t)e _(t)¥ (137)

where

T T

. _ T . _
8. =(C+B W) B 8¢ ; o (tg) = 1 (138)

From (110), (137) it is clear that

ZTSE(t)Z - ZTWG(t)Z (139)

because
:,bxz =0 (140)
Thus, from (139),

T T B
Z'S_(t)Z=Z W_(t)Z =0 (141)
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since
Wg(tf) =0, Ve (142)
Lemma 14.
T = <
z's_(t)z S0 . (143)

Proof. From Lemma 12 Soo(t) is monotone increasing. Lemma 14

then follows from Lemma 13.

5. Proof of Theorem B1l.

(i) Necessary Condition. If Assumptions 1 through 7 are satisfied

and if 52% [Ou(-)] 2 0 for all admissible Ou(-) then by Lemmas 12-14
IVt e (to, tf) a real symmetric monotone increasing matrix function

of time such that

T .
C+3B Soo =0 a.e. in [to, tf] (144)
ZTS t)z S 0 (145)
oo f
Defining
PX(t) = Soo(t) s te (to, tf) (146)
yields
P¥(t;) = 5_ (t;) (147)
and
T2 .
C+B P*x=0 a.e. in [to,tf] , (148)
T <
Z P'»(tf)Z =0 . (149)

Using the same argument on (148) as was used in Section II. 5 on
equation (93) shows that (148), (149) imply (122), (123) which by Lemma 11
imply the necessary conditions of Theorem Bl.

(ii) Sufficient Condition. Suppose that (122) is satisfied by a P*(t)

which exists Vt € [to, tf] (strengthened existence condition) such that

-Z P*Z] 2 0,
ts
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Adjoin the linearized dynamics to the canonical second variation

as follows

t

-~ < f -~
6%V *[Bu(-)] = 6°V*[bu(-)] 2 ( {6uTCoy + 6y TP#(BOu - 6y)}at
vt
© (150)
tf -
- -C Oy~ P* 0% dt (151)
Yt
o
because of (122). Integrating (151) by parts yields
b
6%+ [Bu(-)] = § ’:'la‘@YTdi:’>=<(t)5Y - %5YTf°*5y (152)
to tf
where the integral is in the Stieltjies sense.
Using (110) and the fact that éx(tf) = Gy(tf) yields
tf
%3 [Bu(-)] :S SoyTabx()dy - $[0y" 51T 2TPrz[6y27°]| (153
' to te

Since P*(t) is monotone increasing the integral is nonnegative and since

-ZT?>‘<Z Z 0 the boundary term is nonnegative. This concludes the

te

sufficiency proof.

Note. This sufficient condition for the constrained terminal state problem
may appear to be stringent because a P (tf) is required to exist, but
Soo(tf) is undefined. However, as in the free terminal state case it is

the authors' opinion that the gap between the necessary and the sufficient
condition is minimal. This is supported by the following (slightly

altered) sufficiency theorem due to Brockett [18, p. 140] (a proof of
necessity of this theorem is not given in [18] but appears to be straight~

forward).
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Theorem 7. [c.f. Theorem 6]. If there exists a symmetric boundary
condition Se(tf) such that the solution of (128) exists Vt ¢ [to, tf] then
52V>Ii<\1[5u(- ), €] is positive-deﬁnite.+

Of course the solution of (128) with finite boundary condition is
not the same as the weighting matrix (136) of the quadratic optimal
value function. This is consistent with the fact that AP*(tf) in our suffi-
cient condition cannot be identified with Soo(tf); i.e., in our sufficient
condition for the fixed terminal state problem we lose the identification

of AP*(-) being the limit of the weighting matrix of the quadratic optimal

value function as € -->oo.

IV. Relation to Existing Necessary Conditions of Optimality

Known necessary conditions for singular problems can be deduced
from our theorems. Here we give the most important ones.

Theorem Cl. [Robbins [7], Goh [10]]. Under Assumptions 1l through 5

a necessary condition for V[u(-)] to have a minimum at u(-) is that
H £, be symmetric for all t € [to, tf].
Proof. From (32)

T -
Huxfu + fquu =0 Vt e (to’tf] (154)
Since P is symmetric it follows that H__f is symmetric in (t_,t].
ux’u o’ 'f
Assumption 2 implies that indeed Huxfu is symmetric in [to, tf].

Theorem C2. [Jacobson[l]]. Under Assumptions 1l through 5 a neces-

sary condition for V[u(+)] to have a minimum (unconstrained terminal

state case) at u(-) is that

—_
—
{81

N

T .
(HuX + fu Q)fu 0 YVt € [to, tf]

where Q satisfies (36).

+Brockett treats the case where RUX = I
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Proof. From (32) and (34)

H f +1Qf +f 0 Pof =0 Vt e (t,t.) (156)
ux u u o u u u o’ 'f

Since P(t) € 0 Vt ¢ [t,, ;] it follows from (156) that
(H_ +1iQ)f = 0 Vt e (t ,t.] (157)
ux u u o’ 'f

Since Hux’ fu’ Q are continuous in time (155) follows.

Theorem C3. [Kelley [6], Robbins [7] generalized Legendre~Clebsch

condition]. Under Assumptions |l through 5 a necessary condition for

V[u(-)] to have a minimum at u(+) is that
(-1)2=H =0 vt e[t _,t,] (158)
Proof. From (32), and post multiplying by { , we obtain

(1 +iTP)f +(H _+ i P)i Jdt + £ dPf =0 (159)
X u u ux u u u u

u
where, from (34)-(36)
T T .z
4P = (-H - £ P - Pf )dt + @ dP% (160)
XX X X

Using (32) and (160) in (159) yields

@ f +H f -1'H  -H f -f'H_f +ffH
ux u ux u u Xu ux u u XX U u X XU
+H ff)dt=-f o aPsf (161)
ux X u u u

-~

The left hand side of (161) is just (E%Hu)dt' Since P is monotone

increasing in t we obtain from (161)

-n2g =

(-1)=H_ >0 Ve (e ,ty) (162)
By the assumed continuity of —aaﬂHu (162) implies

n2g =

(-1) 5o Hy, 0 Vt € [to,tf] (163)

+Here dP is the increment in P in time dt.
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Note. IfH_, £, f, H are assumed smooth in t then the general
—_— xx’ "x’ v Tux

form of the generalized Legendre-Clebsch condition can be deduced

in the manner outlined above

2p
0 d
(-1)PZ[E~H 120 (164)
du dth u

V. Relation to Generalized Jacobi (Riccati equation) Necessary Condition

In [5] Kelley's transformation technique is used to transform the
singular second variation into a nonsingular one in a reduced state
space. A condition for this to succeed is that (163) be satisfied with
strict inequality. It is then shown that the Riccati differential equation
associated with this nonsingular problem implies the conditions of
Corollary Al.2 i.e., these conditions are necessary as well as sufficient
for a large class of problems. (It should be possible to prove this via
our limit approach; one would only have to show that Soo(t) is continuously
differentiable with respecttot, t € (to’tf)‘)

In [5] sufficient conditions are given to ensure that Theorem A2
holds. We state one set of these conditions here;

Theorem D1. If the conditions of Corollary Al. 2 are satisfied then the

following are sufficient to ensure that

6°V[u(-)]= 0 == V[a(-) + u(-)]> V[u(-)] (165)
a) Strengthened Generalized Legendre-Clebsch Condition

a L)
- —H .> 0 Vt € [to, tf] (166)

b) Strengthened Jacobson Condition at the Terminal Time

T
(H +f F )| >0 (167)

u xXxx' u

by
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In fact (166), (167) together with the conditions of Corollary Al. 2 are

sufficient to ensure that the transformed second variation is strongly

positive with respect to the control variable in the transformed space.

VI. Conclusion

Necessary and sufficient conditions for optimality for singular
control problems are obtained by studying the limiting behavior of a
nonsingular second variation. This nonsingular second variation is
constructed in such a way that it tends to the singular second variation
as a parameter approaches infinity. Optimality conditions for both un-
constrained and constrained terminal-state problems are obtained.

The optimality conditions derived in this paper are very similar
to certain sufficient conditions of Jacobson [2]+ In a companion paper
[5] it is shown that Jacobson's sufficient conditions are also necessary
for a large class of singular optimal control problems; moreover,
satisfaction of these conditions is shown to be equivalent to the exis-~
tence of a solution of a certain matrix Riccati differential equation.

The closing sections of the present paper relate the necessary
and sufficient conditions to known necessary conditions. In particular
the important necessary conditions of Robbins [7], Goh [8], Kelley et al.

[6] and Jacobson [1] follow easily from these new results.

+Control problem examples which illustrate the use of these conditions
are given in [2].
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